Kamis, 18 Januari 2024

Energi

 Energi







A. Energi Dalam Sistem Kehidupan

 1. Perubahan bentuk energi (Transformasi Energi) Energi adalah kemampuan untuk melakukan usaha. Energi ada di mana-mana, bahkan benda-benda yang ada di sekitar kita membutuhkan energi. Contohnya mobil, motor, pesawat, dan kereta api dapat berjalan dengan adanya bantuan energi, peralatan listrik di rumah dapat dinyalakan karena adanya energi. Pada dasarnya energi tidak pernah hilang, tetapi diubah ke dalam bentuk energi lain. Dengan konsep tersebut energi dapat dimanfaatkan dalam kehidupan sehari-hari. Energi tidak dapat diciptakan dan energi tidak dapat dimusnahkan, energi hanya bisa berubah dari bentuk yang satu ke bentuk yang lainnya. Inilah yang dinamakan hukum kekekalan energi. Tidak semua energi dapat langsung dimanfaatkan tetapi perlu diubah ke bentuk lain. Energi yang dimiliki oleh suatu benda bisa bermacam-macam bentuk, di antaranya energi kinetik, energi potensial, energi panas, energi listrik, energi kimia, dan energi nuklir.

 a. Energi Kinetik Energi kinetik adalah energi yang dimiliki oleh sebuah benda karena gerakannya atau energi pada benda-benda yang bergerak. Gerak benda dapat berupa gerak translasi (lurus) dan rotasi sehingga energi kinetik berupa energi kinetik translasi dan energi kinetik rotasi. Pada materi ini energi kinetik translasi yang akan dibahas adalah energi kinetik translasi. Contoh dari energi kinetik adalah sebuah mobil yang bergerak dengan kecepatan tertentu, manusia yang berjalan atau berlari, dan lain sebagainya. Konsep dari energi kinetik ini adalah dengan memahami bentuk transfer energi yang berasal dari suatu bentuk energi ke bentuk energi yang lainnya. Besar kecilnya energi kinetik suatu benda bergantung kepada massa dan kelajuan benda tersebut. Secara matematis energi kinetik dirumuskan sebagai Ek = ½ m v

b. Energi potensial Energi potensial adalah energi yang dihasilkan oleh gaya-gaya yang bergantung pada posisi atau konfigurasi sebuah benda (atau benda-benda) relative terhadap lingkungannya. Beragam jenis energi potensial dapat didefinisikan, dan masing-masing berhubungan dengan suatu tipe gaya tertentu. Energi potensial dapat dibagi menjadi dua, yaitu: 

1) Energi potensial gravitasi bumi, yaitu energi yang dimiliki suatu benda karena terletak di atas permukaan bumi. Makin tinggi letak suatu benda di atas permukaan bumi, makin besar energi potensial gravitasinya. Contohnya Buah mangga yang menggantung. Mangga ini berpotensi memiliki energi karena posisinya dari atas tanah. Energi yang tersimpan ini dinamakan energi potensial gravitasi. Energi potensial gravitasi yang disimbolkan dengan E p . Energi potensial gravitasi dinyatakan sebagai berikut. E p = m.g.h (5.2) Dimana: m = massa benda (kg) g = percepatan gravitasi (m/s2 ) h = ketinggian benda (m) 2) Energi potensial elastisitas, ialah energi yang tersimpan pada benda yang sedang diregangkan (misalnya, pada karet katapel dan busur panah) atau ditekan (misalnya, pada per). Makin jauh peregangan dan penekanannya, makin besar energinya. 

Energi potensial elastisitas biasa disebut juga Energi Potensial Pegas. Besarnya energi potensial pegas dapat ditentukan dengan menggunakan persamaan: Ek = ½ k Δx2 (5.3) Dimana: E = energi potensial pegas (joule) k = konstanta pegas (N/m) Δx = perubahan panjang pegas (m) 

Usaha

 Usaha




Smber foto: biologizone.com

Secara sederhana untuk mengenali usaha dalam fisika bisa digambarkan dengan seseorang yang mendorong atau menarik suatu benda. Adanya dorongan tersebut berarti orang itu telah memberikan gaya pada benda.
Usaha sangat dipengaruhi oleh dorongan atau tarikan (gaya). Sehingga dapat disimpulkan bahwa usaha dihasilkan oleh gaya yang dikerjakan pada suatu benda sehingga benda itu berpindah tempat

Rumus Usaha


Dalam ilmu fisika, usaha disimbolkan dengan huruf W, kemudian gaya disimbolkan dengan F dan perpindahan dengan s.
Secara matematis rumus usaha dituliskan dalam persamaan berikut.

W= F x s
Keterangan:
W = usaha [satuan Joule (J)]
F = gaya [satuan Newton (N)]
s = perpindahan [satuan meter (m)]

Perlu diketahui bahwa usaha memiliki satuan yang sama dengan energi yaitu joule. Dengan ketentuan bahwa 1 joule sama dengan besar usaha yang dilakukan oleh gaya sebesar 1 N dengan perpindahan 1 m.

1. Rumus Usaha Bernilai Positif
Karena nilai usaha sangat dipengaruhi oleh arah perpindahan gaya, maka usaha dapat bernilai positif, negatif atau nol.
Usaha Bernilai Positif Foto: Doc. Guru Berbagi Kemdikbud
Jika gaya searah dengan perpindahan benda, maka usaha bernilai positif.
W = F x s

2. Rumus Usaha Bernilai Negatif
Jika gaya berlawanan dengan perpindahan benda, maka usaha bernilai negatif.

W = -F x s

Sumber: detikcom.com



Gunung Berapi

 Gunung Berapi



Sumber foto: indonesiabaik.com



Gunung berapi atau gunung api secara umum adalah istilah yang dapat didefinisikan sebagai suatu sistem saluran fluida panas (batuan dalam wujud cair atau lava) yang memanjang dari kedalaman sekitar 10 km di bawah permukaan bumi sampai ke permukaan bumi, termasuk endapan hasil akumulasi material yang dikeluarkan pada saat meletus.[1]

Gunung berapi di Bumi terbentuk dikarenakan keraknya terpecah menjadi 17 lempeng tektonik utama yang kaku dan mengambang di atas lapisan mantel yang lebih panas dan lunak. Oleh karena itu, gunung berapi di Bumi sering ditemukan di batas divergen dan konvergen dari lempeng tektonik. Gunung berapi biasanya tidak terbentuk di wilayah dua lempeng tektonik bergeser satu sama lain.

Bahaya dari debu vulkanik adalah terhadap penerbangan khususnya pesawat jet karena debu tersebut dapat merusak turbin dari mesin jet.[2] Letusan besar dapat mempengaruhi suhu dikarenakan asap dan butiran asam sulfat yang dimuntahkan letusan dapat menghalangi matahari dan mendinginkan bagian bawah atmosfer bumi seperti troposfer, tetapi material tersebut juga dapat menyerap panas yang dipancarkan dari bumi sehingga memanaskan stratosfer.

Gunung berapi terdapat di seluruh dunia, tetapi lokasi gunung berapi yang paling dikenali adalah gunung berapi yang berada di sepanjang busur Cincin Api Pasifik (Pacific Ring of Fire).[1] Busur Cincin Api Pasifik merupakan garis bergeseknya antara dua lempengan tektonik dan lebih, dimana Lempeng Pasifik saling bergesek dengan lempeng-lempeng tetangganya.

Gunung berapi dapat dijumpai dalam beberapa bentuk sepanjang masa hidupnya. Gunung berapi yang aktif mungkin berubah fase menjadi separuh aktif, istirahat, sebelum akhirnya menjadi tidak aktif atau mati.[1] Namun gunung berapi mampu istirahat dalam waktu yang sangat lama, lebih dari ribuan tahun sebelum berubah menjadi aktif kembali.[3]

Letusan gunung berapi terjadi apabila magma naik melintasi kerak bumi dan muncul di atas permukaan. Apabila gunung berapi meletus, magma yang terkandung di dalam kamar magma di bawah gunung berapi meletus keluar sebagai lava, dimana lava ini dapat berubah menjadi lahar setelah mengalir dan bercampur dengan material-material di permukaan bumi. Selain dari aliran lava, kehancuran yang disebabkan oleh letusan gunung berapi.

Ilmu yang mempelajari gunung berapi dinamakan Vulkanologi, dimana ilmu ini mempelajari letusan gunung berapi untuk tujuan memperkirakan kemungkinan letusan yang bisa terjadi dari suatu gunung berapi, sehingga dampak negatif letusan gunung berapi dapat ditekan.



Wilayah pembentukan[sunting | sunting sumber]

Gunung berapi di Bumi terbentuk dari aktivitas lempeng tektonik di kerak yang saling bergesekan dan menekan satu sama lain. Oleh karenanya gunung berapi banyak ditemukan dekat dengan perbatasan lempeng tektonik. Secara geologis, Wilayah dimana gunung berapi terbentuk dibagi tiga, yaitu:

Batas divergen antar lempeng[sunting | sunting sumber]

Apabila kedua lempeng tektonik bergerak saling menjauhi satu sama lain, maka kerak samudra yang baru akan terbentuk dari keluarnya magma ke permukaan dasar laut. Wilayah antara kedua lempeng yang saling menjauh ini dinamakan dengan batas divergen.[4] Aktivitas ini lalu akan memunculkan Punggung tengah samudra yang terbentuk dari pendinginan magma yang muncul ke permukaan. Gunung berapi yang terbentuk dari aktivitas ini berada di bawah laut, yang ditandai dengan fenomena Ventilasi hidrotermal. Apabila punggung tengah samudra ini mencuat sampai ke permukaan laut, maka kepulauan vulkanik akan terbentuk, contohnya adalah Islandia.

Batas konvergen antar lempeng[sunting | sunting sumber]

Berbeda dengan batas divergen yang tercipta dari pergerakan kedua lempeng tektonik yang saling menjauh, Batas konvergen antar lempeng merupakan wilayah dimana dua lempeng atau lebih bertemu lalu saling menekan dan mengalami subduksi sehingga tepian di satu lempeng menindih tepian yang lain.[4] Penindihan lempeng ini ditandai dengan terbentuknya bentang alam berupa palung di dasar laut. Fenomena ini menimbulkan melelehnya material yang terdapat di mantel bumi, sehingga material tersebut menjadi magma dan naik ke permukaan kerak yang tipis. Gunung berapi di wilayah ini terbentuk dari pertemuan antara kedua lempeng kerak samudra atau antara lempeng kerak samudra dan benua. Pertemuan antara kedua lempeng kerak benua biasanya tidak memicu pembentukan gunung berapi dikarenakan kerak benua memiliki ketebalan yang tidak dapat ditembus oleh magma di bawah permukaan. Contoh dari gunung berapi ini adalah jajaran gunung berapi di Cincin Api Pasifik, atau Gunung Etna di Italia.

Titik panas[sunting | sunting sumber]

Titik panas merupakan suatu wilayah vulkanik dimana magma naik ke permukaan dikarenakan adanya celah di kerak bumi yang memungkinkan pergerakan tersebut. Titik panas dapat ditemukan jauh dari batas antar kedua lempeng tektonik. Pergerakan ini memunculkan gunung berapi yang memiliki ciri letusan efusif yang lemah dimana lava muncul ke permukaan secara halus. Dikarenakan lempeng tektonik terus bergerak secara perlahan, wilayah titik panas dapat membentuk gunung berapi yang berbeda-beda sesuai dengan jalur pergerakan suatu lempeng. Kepulauan Hawaii merupakan kepulauan yang terbentuk dari aktivitas vulkanik di titik panas di Samudra Pasifik.


Jenis gunung berapi berdasarkan bentuknya[sunting | sunting sumber]

Perisai
Tersusun dari batuan aliran lava yang dengan kekentalan rendah yang membeku, sehingga tidak sempat membentuk suatu kerucut yang tinggi (curam), bentuknya akan berlereng landai, dan susunannya terdiri dari batuan yang bersifat basaltik. Gunung seperti ini umumnya hanya mengalami erupsi efusif yang relatif lemah. Contoh bentuk gunung berapi ini terdapat di kepulauan HawaiIslandia, dan Afrika Timur.[5]
Stratovulkan
Potongan melintang sebuah stratovulkan (tidak sesuai skala):
  1. Dapur magma
  2. Batuan dasar
  3. Pipa kawah
  4. Dasar gunung
  5. Sill
  6. Dike
  7. Lapisan debu vulkanik
  8. Flank
  9. Lapisan lava yang dimuntahkan oleh gunung berapi
  10. Kepundan
  11. Kerucut parasit
  12. Aliran lava
  13. Vent
  14. Kawah
  15. Awan debu
Tersusun dari tefra dan lava hasil erupsi dengan tipe letusan berubah-ubah sehingga dapat menghasilkan susunan yang berlapis-lapis dari beberapa jenis batuan. Lapisan lava tersebut kemudian terakumulasi hingga membentuk suatu kerucut besar (raksasa) yang terkadang memiliki bentuk tidak beraturan. Gunung Merapi di Yogyakarta, Gunung Fuji di JepangGunung Mayon di FilipinaGunung Vesuvius, dan Gunung Stromboli di Italia merupakan contoh dari gunung berapi jenis ini.
Lava yang berasal dari stratovulkan umumnya mengandung lebih banyak gas dan silika daripada lava yang dihasilkan oleh gunung berapi tipe perisai. Kombinasi ini menyebabkan lava dari stratovulkan menjadi lebih kental[6] dan menghasilkan lebih banyak abu vulkanik. Gunung berapi tipe stratovulkan juga memiliki lereng yang cukup curam, contohnya Gunung Popocatépetl yang lerengnya memiliki gradien rata-rata sekitar 14,04° (25%) dan gradien maksimum sebesar 32,21° (63%).[7]
Kerucut bara (Cinder cone)
Merupakan gunung berapi yang abu dan pecahan kecil batuan vulkanik menyebar di sekeliling gunung. Sebagian besar gunung jenis ini membentuk mangkuk di puncaknya. Jarang yang tingginya di atas 500 meter dari tanah di sekitarnya.
Kaldera
Gunung berapi jenis ini terbentuk dari ledakan yang sangat kuat di masa lalu yang melempar bagian atas dan tepi gunung sehingga membentuk cekungan. Gunung Bromo merupakan jenis ini, dimana kaldera tengger yang ada pada saat ini merupakan hasil letusan besar di masa lalu.
Maar
Maar merupakan gunung berapi dengan ketinggian rendah dan diameter kepundan yang lebar, dimana gunung berapi ini terbentuk dari letusan freatomagmatik yang disebabkan oleh tercampurnya magma dengan air di bawah tanah. Saat tidak aktif, maar biasanya terisi oleh air sehingga tampak seperti sebuah danau biasa.


Sumber: wikipedia.com




Gempa Bumi

Gempa Bumi




Sumber foto: gurusumedang.com

 

Gempa Bumi

Gempa bumi adalah getaran atau getar-getar yang terjadi di permukaan bumi akibat pelepasan energi dari dalam secara tiba-tiba yang menciptakan gelombang seismik. Gempa Bumi biasa disebabkan oleh pergerakan kerak bumi (lempeng Bumi). Frekuensi suatu wilayah, mengacu pada jenis dan ukuran gempa Bumi yang dialami selama periode waktu. Gempa Bumi diukur dengan menggunakan alat Seismometer. Momen Magnitudo adalah skala yang paling umum di mana gempa Bumi terjadi untuk seluruh dunia.  Skala Rickter adalah skala yang dilaporkan oleh observatorium seismologi nasional yang diukur pada skala besarnya lokal 5 magnitude. Kedua skala yang sama selama rentang angka mereka valid. Gempa 3 magnitude atau lebih sebagian besar hampir tidak terlihat dan jika besarnya 7 lebih berpotensi menyebabkan kerusakan serius di daerah yang luas, tergantung pada kedalaman gempa. Gempa Bumi terbesar bersejarah besarnya telah lebih dari 9, meskipun tidak ada batasan besarnya. Gempa Bumi besar terakhir besarnya 9,0 atau lebih besar adalah 9.0 magnitudo di Jepang pada tahun 2011 (per Maret 2011), dan itu adalah gempa Jepang terbesar sejak pencatatan dimulai. Intensitas getaran diukur pada modifikasi Skala Mercalli.


Jenis gempa bumi dapat dibedakan berdasarkan:

Berdasarkan penyebab

Gempa bumi tektonik 

Gempa Bumi ini disebabkan oleh adanya aktivitas tektonik, yaitu pergeseran lempeng-lempeng tektonik secara mendadak yang mempunyai kekuatan dari yang sangat kecil hingga yang sangat besar. Gempa bumi ini banyak menimbulkan kerusakan atau bencana alam di Bumi, getaran gempa Bumi yang kuat mampu menjalar keseluruh bagian Bumi. Gempa bumi tektonik disebabkan oleh pelepasan tenaga yang terjadi karena pergeseran lempengan plat tektonik seperti layaknya gelang karet ditarik dan dilepaskan dengan tiba-tiba.


Gempa bumi tumbukan

Gempa Bumi ini diakibatkan oleh tumbukan meteor atau asteroid yang jatuh ke Bumi, jenis gempa Bumi ini jarang terjadi


Gempa bumi runtuhan

Gempa Bumi ini biasanya terjadi pada daerah kapur ataupun pada daerah pertambangan, gempabumi ini jarang terjadi dan bersifat lokal.


Gempa bumi buatan

Gempa bumi buatan adalah gempa bumi yang disebabkan oleh aktivitas dari manusia, seperti peledakan dinamit, nuklir atau palu yang dipukulkan ke permukaan bumi.


Gempa bumi vulkanik (gunung api)

Gempa Bumi ini terjadi akibat adanya aktivitas magma, yang biasa terjadi sebelum gunung api meletus. Apabila keaktifannya semakin tinggi maka akan menyebabkan timbulnya ledakan yang juga akan menimbulkan terjadinya gempa bumi. Gempa bumi tersebut hanya terasa di sekitar gunung api tersebut.


Berdasarkan kedalaman


Gempa bumi dalam

Gempa bumi dalam adalah gempa bumi yang hiposentrumnya berada lebih dari 300 km di bawah permukaan bumi (di dalam kerak bumi). Gempa bumi dalam pada umumnya tidak terlalu berbahaya.


Gempa bumi menengah

Gempa bumi menengah adalah gempa bumi yang hiposentrumnya berada antara 60 km sampai 300 km di bawah permukaan bumi.gempa bumi menengah pada umumnya menimbulkan kerusakan ringan dan getarannya lebih terasa.


Gempa bumi dangkal

Gempa bumi dangkal adalah gempa bumi yang hiposentrumnya berada kurang dari 60 km dari permukaan bumi. Gempa bumi ini biasanya menimbulkan kerusakan yang besar.


Berdasarkan gelombang/getaran gempa


Gelombang Primer

Gelombang primer (gelombang lungituudinal) adalah gelombang atau getaran yang merambat di tubuh bumi dengan kecepatan antara 7–14 km/detik. Getaran ini berasal dari hiposentrum.


Gelombang Sekunder

Gelombang sekunder (gelombang transversal) adalah gelombang atau getaran yang merambat, seperti gelombang primer dengan kecepatan yang sudah berkurang,yakni 4–7 km/detik. Gelombang sekunder tidak dapat merambat melalui lapisan cair.


Penyebab terjadinya gempa bumi


Kebanyakan gempa Bumi disebabkan dari pelepasan energi yang dihasilkan oleh tekanan yang disebabkan oleh lempengan yang bergerak. Semakin lama tekanan itu kian membesar dan akhirnya mencapai pada keadaan di mana tekanan tersebut tidak dapat ditahan lagi oleh pinggiran lempengan. Pada saat itulah gempa Bumi akan terjadi.


Pergeseran lempeng bumi dapat mengakibatkan gempa bumi karena dalam peristiwa tersebut disertai dengan pelepasan sejumlah energi yang besar. Selain pergeseran lempeng bumi, gerak lempeng bumi yang saling menjauhi satu sama lain juga dapat mengakibatkan gempa bumi. Hal tersebut dikarenakan saat dua lempeng bumi bergerak saling menjauh, akan terbentuk lempeng baru di antara keduanya. Lempeng baru yang terbentuk memiliki berat jenis yang jauh lebih kecil dari berat jenis lempeng yang lama. Lempeng yang baru terbentuk tersebut akan mendapatkan tekanan yang besar dari dua lempeng lama sehingga akan bergerak ke bawah dan menimbulkan pelepasan energi yang juga sangat besar. Terakhir adalah gerak lempeng yang saling mendekat juga dapat mengakibatkan gempa bumi. Pergerakan dua lempeng yang saling mendekat juga berdampak pada terbentuknya gunung. Seperti yang terjadi pada gunung Everest yang terus tumbuh tinggi akibat gerak lempeng di bawahnya yang semakin mendekat dan saling bertumpuk.


Gempa Bumi biasanya terjadi di perbatasan lempengan-lempengan tersebut. Gempa Bumi yang paling parah biasanya terjadi di perbatasan lempengan kompresional dan translasional. Gempa Bumi fokus dalam kemungkinan besar terjadi karena materi lapisan litosfer yang terjepit kedalam mengalami transisi fase pada kedalaman lebih dari 600 km.


Beberapa gempa Bumi lain juga dapat terjadi karena pergerakan magma di dalam gunung berapi. Gempa Bumi seperti itu dapat menjadi gejala akan terjadinya letusan gunung berapi. Beberapa gempa Bumi (jarang namun) juga terjadi karena menumpuknya massa air yang sangat besar di balik dam, seperti Dam Karibia di Zambia, Afrika. Sebagian lagi (jarang juga) juga dapat terjadi karena injeksi atau akstraksi cairan dari/ke dalam Bumi (contoh, pada beberapa pembangkit listrik tenaga panas Bumi dan di Rocky Mountain Arsenal). Terakhir, gempa juga dapat terjadi dari peledakan bahan peledak. Hal ini dapat membuat para ilmuwan memonitor tes rahasia senjata nuklir yang dilakukan pemerintah. Gempa Bumi yang disebabkan oleh manusia seperti ini dinamakan juga seismisitas terinduksi.

Sumber: bpbd.ntbprov.go.id




Lempeng Tektonik

 Lempeng Tektonik



Sumber foto: undefined.com


Pengertian Lempeng Tektonik 

Lempeng merupakan lapisan penyusun bumi paling atas yang sebagian besar mempunyai ketebalan hingga 100 km. Sementara tektonik adalah adanya proses dari pergerakan yang terdapat pada kerak bumi hingga membuat timbulnya beberapa fenomena seperti lipatan, lekukan hingga patahan yang berdampak pada tinggi rendahnya permukaan bumi. Lempeng tektonik erat kaitannya dengan lapisan litosfer pada bumi yang memang menjadi lapisan paling atas dari bumi. Lapisan yang tersusun dari kerak bumi dan mantel bumi, keduanya memiliki sifat sangat padat dan kaku. Lapisan litosfer mengalami proses yang berujung membentuk lempeng-lempeng tektonik pada bumi. Berdasar dari penjelasan di atas, dapat dikatakan bahwa lempeng tektonik adalah bagian paling atas bumi dengan fenomena yang muncul akibat proses pergerakan dan mempengaruhi tinggi rendah dari bumi tersebut. Secara langsung adanya proses pergerakan ini membuat pengaruh signifikan pada penampakan permukaan bumi yang dinamis. Indonesia terletak pada permukaan tiga lempeng tektonik besar yaitu lempeng eurasia, lempeng Indo-Australia dan Lempeng Pasifik. Letak geologis Indonesia dilihat berdasarkan pada titik pertemuan dari tiga lempeng tersebut. Kondisi ini memunculkan rawan terjadinya gempa di daerah yang terletak pada pertemuan lempeng tektonik tersebut.


Teori Lempeng Tektonik Yang dimaksud dengan teori lempeng tektonik adalah teori dasar di bidang geologi, dikembangkan untuk dapat memberi penjelasan secara mendalam mengenai fakta dari pergerakan besar lapisan permukaan paling atas bumi atau litosfer secara alami. Teori lempeng tektonik digunakan untuk menjelaskan interaksi dari lempeng-lempeng yang ada dan menimbulkan beberapa asumsi ini.


Terdapat pembentukan material lempeng yang baru.

Material permukaan paling atas bumi membentuk lempeng yang kaku.

Luas dari area permukaan bumi konstan. Lempeng permukaan paling atas bumi mampu mengirim tekanan horizontal tanpa penyambung. Contoh Teori Lempeng Tektonik Lempeng tektonik dipakai untuk menjelaskan pergeseran benua, fenomena yang terjadi saat benua masih menjadi satu kesatuan yang disebut benua super besar atau supercontinent dan dinamakan dengan sebutan Pangea. Hingga tak lama setelah itu benua yang muncul terbagi menjadi beberapa bagian. Beberapa bagian benua yang terbagi ini dinamakan Gondwana dan Laurasia, munculnya beberapa benua ini ditandai dengan pergerakan dan diibaratkan seperti bongkahan es yang mengapung dan bergerak di lautan. Karena inilah teori lempeng tektonik juga disebut dengan teori pengapungan kontinen, yang diperkuat dengan beberapa bukti seperti berikut. Kesamaan Garis Pantai Adanya kecocokan garis pantai ini ditemukan di benua Amerika Selatan dan benua Afrika Barat, kedua benua ini memperlihatkan adanya himpitan benua satu dengan benua lainnya. Jika dilihat dengan seksama, maka dugaan awal menyebutkan bahwa kedua benua ini awalnya adalah satu kesatuan diikuti dengan penelitian berupa pencocokan garis pantai yang ada. Persebaran Fosil Munculnya fosil-fosil sama di beberapa benua, seperti Mosasaurus tempat-tempat berbeda di setiap benua yang bahkan sudah dipisahkan oleh lautan. Hal ini memunculkan asumsi, bahwa beberapa tempat tersebut dulunya memang sangat dekat dan dihubungkan oleh daratan. Mesosaurus sendiri merupakan salah satu reptil besar yang hidup di danau air tawar dan sungai. Sekitar 260 juta tahun yang lalu, dua benua yang menemukan fosil reptil ini yakni di benua Amerika dan benua Afrika. Kemudian ditemukan juga fosil tanaman Clossopteris yang disebut telah hidup di sekitar 260 juta tahun yang lalu. Tanaman ini ditemukan bersama fosil reptil Cynognathus dan Lystrosaurus di benua Afrika, India, Antartika dan Amerika. Kesamaan Jenis Batuan Kecocokan jenis batuan ini muncul di jalur pegunungan Appalachian di bagian timur benua Amerika Utara, pegunungan ini menyebar ke timur laut hingga menghilang di area Newfoundland. Hingga kemudian pegunungan dengan jenis yang sama pada penyusun batuannya di Scandinavia. Untuk memperkuat hal ini dapat dilihat dengan posisi sebelum terpisah. Pegunungan yang ada kemudian akan membentuk satu jalur yang menerus, ini menjadi salah satu cara yang dipakai untuk membuktikan teori continent drift. Teori ini dilakukan dengan mempersatukan kesamaan penampakan dari bentuk-bentuk geologi yang telah dipisahkan oleh lautan. Bukti Iklim Purba (Paleoclimatic) Iklim masa purba juga menjadi bukti ilmiah, lewat hasil penelitian yang dilakukan dan dipelajari oleh para ahli geologi kebumian. Semua hasil digunakan untuk membuktikan teori benua mengapung, pada 250 juta tahun yang lalu bagian bumi selatan memiliki iklim dingin seperti yang ada di Antartika, Australia, Amerika Selatan dan Afrika serta India. Adanya proses glasiasi membuat kondisi ini terjadi secara terus menerus pada beberapa daerah, hingga membuat para ahli memercayai jika daratan telah mengalami glasiasi dari satu benua super yang sama. Setelah itu terpisah dan mengapung menjadi beberapa bagian, inilah yang menjadi teori pengapungan benua. Medan Magnet Benua (Paleomagnetisme) Teori yang membuktikan adanya benua super besar juga dibuktikan dengan menentukan intensitas dan arah medan magnet bumi. Hal pertama yang dilakukan adalah dengan menentukan medan magnet purba, lalu melakukan analisis dalam beberapa batuan dengan kandungan mineral dan kaya unsur besi, penggunaan mineral dinamakan dengan fosil kompas. Fosil berperan sebagai kompas untuk menunjukkan arah kemagnetan, dipengaruhi juga dengan adanya komposisi basalitis. Karena inilah batuan yang terbentuk mampu merekam arah kutub magnet saat batuan terbentuk. Hingga akhirnya ditemukan kesamaan arah kutub magnet disertai dengan lokasi terbentuknya. Kondisi yang membuat perkembangan teori perkembangan lempeng tektonik ke arah perluasan, hasil dari pergerakan vertikal batuan. Namun juga tak menemukan adanya ukuran bertambah besar permukaan bumi, kondisi yang menyebabkan zona subduksi dan sesar translasi. Perkembangan teori tektonik ini yang akhirnya diterima oleh berbagai kalangan.


Jenis-jenis Batas Lempeng Tektonik

teori lempengan tektonik Batas Divergen Batas Divergen disebut juga sebagai zona pertambahan dan pembentukan lempeng baru, merupakan zona dengan lempeng-lempeng mengalami pergerakan saling menjauh satu sama lain. Bagian kosong karena pergerakan lempeng tektonik menjauh nantinya akan menjauh dari bagian mantel bumi yang terdapat di bagian paling luar bumi. Kondisi yang juga menyebabkan adanya mid oceanic ridge atau rift valley, yang bisa membuat lempeng benua terbelah menjadi dua dan memunculkan adanya intrusi magma pada bagian tengah lempeng yang kosong. Intrusi magma muncul karena arus konveksi untuk kemudian mendorong lempeng bergerak ke arah lain. Batas Konvergen Adalah zona penghancuran yang membuat lempeng-lempeng di permukaan bumi kemudian mendekat satu sama lain. Salah satu lempeng kemudian masuk dan menembus mantel hingga mengalami peleburan serta penghancuran yang diakibatkan adanya suhu tinggi. Dalam zona konvergen muncul subduksi dan kolisi. Apabila lempeng memiliki bahan yang berat maka akan muncul subduksi, sementara jika lempeng dengan bahan ringan menjadi kolisi. Adanya gerakan kolisi di permukaan bumi membuat terciptanya barisan pegunungan dan gerakan subduksi membuat pegunungan vulkanik dengan memunculkan lipatan pada wilayah lempeng yang tertekan. Batas Transform Disebut juga batas geser karena pada batas transform tidak terdapat litosfer yang kemudian dihancurkan dan tidak terdapat litosfer baru tercipta. Beberapa lempeng cenderung bergerak secara lateral atau mendatar satu sama lain. Meskipun pada batas ini banyak muncul patahan transform seperti patahan punggung laut yang panjangnya bisa mencapai ratusan kilometer. Batas transform juga membuat adanya gerakan relatif sinistral ke arah kiri yang berlawanan, hingga dekstral atau ke kanan yang berlawanan. Kondisi yang menciptakan sesar, seperti misalnya Sesar San Andreas yang terdapat di California dan yang pasti batas transform ini banyak terjadi di dasar laut Poin Penting Terkait Pergerakan Lempeng Bumi Kerak benua di muka bumi memiliki sifat yang ringan dan permanen hingga membuat kerak benua tidak bisa tenggelam. Disebabkan juga karena massa jenis kerak benua sangat rendah, lalu kerak samudera memiliki sifat sementara karena adanya tabrakan. Lempeng benua terbentuk dari adanya kerak benua dan kerak samudera sesuai dengan gaya yang memengaruhi pergerakan lempeng di wilayah tersebut. Letak benua bisa berada jauh di luar batas benua yang berkaitan. Lempeng bumi tidak akan menempati suatu medan atau tempat sama, apabila muncul proses penempatan yang sama sehingga salah satu lempeng akan menjadi gunung atau bagian yang dihancurkan mantel bumi. Apabila terdapat dua lempeng yang saling bergerak berjauhan maka akan muncul kerak samudera yang baru di kawasan tersebut. Bumi memiliki sifat konstan, yang artinya tidak mengalami perubahan ukuran baik besar maupun kecil. Gerakan lempeng tektonik sangat lambat, sehingga sulit untuk dirasakan oleh manusia namun jika muncul gerakan secara tiba-tiba dan cepat maka dinamakan gempa bumi. Bentang alam tektonik ditemukan pada batas lempeng.

Sumber: sampoernaacademy. com




Poster Mitigasi Bencana Gempa Bumi

Layers of the Atmosphere Education Infographic in Blue Realistic Style oleh NOBELTA ADVENSIA PUTRI SUNARNO